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The self-similar solution that characterizes the water impact, with a constant vertical
velocity, of a wedge entering the free surface with an arbitrary orientation is derived
analytically. The study is carried out by assuming the fluid to be ideal, weightless
and with negligible surface tension effects. The solution is based on the complex
analysis of nonlinear two-dimensional problems of unsteady free boundary flows and
is written in terms of two governing functions, which are the complex velocity and
the derivative of the complex potential defined in a parameter domain. The boundary
value problem is reduced to the system of an integral and an integro-differential
equation in terms of the velocity modulus and of the velocity angle to the free
surface, both written as functions of a parameter variable. The system of equations
is solved through a numerical procedure which is validated in the case of symmetric
wedges. Comparisons with data available in literature are established for this purpose.
Results are presented in terms of free surface shape, contact angles at the intersection
with the wedge boundary, pressure distribution, force and moment coefficients. For
a given wedge angle, the changes induced by the heel angle on the above quantities
are discussed. A criterion is proposed to determine the limit conditions beyond which
flow separation from the wedge apex occurs. Comparisons with experimental results
available in literature are presented.

1. Introduction
Water impact problems have several important applications in various aspects

of the naval field. Besides their natural connection with ship slamming (Faltinsen,
Landrini & Greco 2004) and planing hulls, renewed attention has been given recently
to the high-speed hydrodynamics of seaplanes, surface-piercing propellers and the
interaction of high-speed liquid drops with structural elements. The short duration and
the large unsteady component of the hydrodynamic loads, which may greatly exceed
the corresponding steady values, are the main features of water impact processes.

From the mathematical standpoint, water impact problems belong to the class
of inverse boundary value problems in which nonlinear and unsteady effects are
strongly coupled. Moreover, the solution of water impact flows is complicated by the
singularities which occur along the three-phase contact line, that is at the intersection
of the free surface with the solid body contour. Historically, progress in solving two-
dimensional free boundary potential flows has been made through the development
of the theory of complex variable functions. As any analytical function is curl and
divergence free, the problem is to find an analytical function, that is the complex
potential, which satisfies the boundary conditions.
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First attempts to solve this rather complicated problem, mainly focused on the
analysis of seaplane landing, were proposed by von Kármán (1929) and Wagner
(1932) who considered the water entry process as sequence of impact impulses.
Tulin (1957) developed a three-dimensional planing flow theory using a slender-body
approximation and solved the linearized problem of the two-dimensional flow in
the cross-plane. The complete linearized solution of the water entry of a wedge
was first proposed by Mackie (1962). More recently, the Wagner’s theory has been
generalized to the vertical entry of a horizontal circular cylinder (Armand & Cointe
1987; Cointe 1991). Different simplified models for the wedge entry problem have
been also proposed by Howison, Ockendon & Wilson (1991), Fraenkel & Mcleod
(1997), and Mei, Liu & Yue (1999).

An exact nonlinear self-similar solution of the water entry problem was obtained
by Dobrovol’skaya (1969) for a symmetric wedge entering the free surface vertically
and with a constant velocity. Self-similarity is a model of the initial stage of water
impact processes with entry velocity large enough to make gravity effects negligible
but not high enough to make acoustic effects relevant. These latter effects are of
major importance in the impact of very blunt bodies or during the very early stage
after the impulsive start of floating bodies (Korobkin & Peregrine 2000). The key
point of Dobrovol’skaya’s solution is finding Wagner’s function from its real value
on the whole fluid boundary by using the Schwarz integral and Sokhotsky–Plemelj
formula. In this way, the boundary value problem is reduced to a nonlinear singular
integral equation. Existence and uniqueness of the similarity solution on the basis
of this approach has been proved for all wedge angles (Fraenkel & Keady 2004).
Owing to the difficulties related to the singularity at the jet tip, Dobrovol’skaya (1969)
solved the singular integral equation numerically only for deadrise angles larger
than 30◦.

The singularity at the jet tip is also responsible for the difficulties that fully nonlinear
numerical approaches, recently developed, encounter when dealing with this rather
complicated problem (Greenhow 1987). In order to overcome this difficulty, Zhao &
Faltinsen (1993) developed a model to cut the thin jet layer off the computational
domain. The model exploits the fact that pressure variations within this region are
small. The numerical approach is based on a mixed Eulerian–Lagrangian formulation
which accounts for all the nonlinearities in the time integration and makes use
of a boundary element method to determine the flow field at each time step. By
using this numerical approach they derived the solution for symmetric wedges with
deadrise angles ranging from 4◦ to 81◦. Comparisons with results obtained through the
Dobrovol’skaya model showed the validity of the assumption made when truncating
the thin jet layer. Instead of truncating the thinnest part of the jet, Battistin &
Iafrati (2004) developed a hybrid finite-boundary element method which proved to
be accurate and efficient. The hybrid method eliminates the intrinsic difficulties that
boundary element approaches have in describing the solution within fluid layers
thinner than the panel size. In order to avoid difficulties related to the singularity at
the jet tip, Wu, Sun & He (2004) proposed an analytical solution for the flow inside
the jet based on the shallow water approximation.

In spite of the intense research activity carried out for symmetric wedges, little
work has been done on asymmetric water entry although this problem is common
in the naval field (Howison, Ockendon & Oliver 2004). As an example, it may
occur when vessels undergo vertical motion in the presence of waves. Moreover,
such flow conditions occur about planing hulls during manoeuvring operations. The
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first models for asymmetric wedge impact within the potential flow theory were
proposed by Garabedian (1953) and Borg (1957). More recently, this problem was
considered by Korobkin (1988), Chekin (1989), Toyama (1993), and Scolan et al.
(1999). In Iafrati (2000) a fully nonlinear numerical method has been developed and
applied to the prediction of the free-surface shape and of the pressure distribution
induced by the vertical water entry of an asymmetric wedge. In Judge, Troesch
& Perlin (2004) a careful experimental analysis has been carried out for the
asymmetric/oblique water entry of a wedge. The analysis was aimed at investigating
the limit conditions beyond which the flow separates from the wedge apex and one
side of the wedge remains dry. Besides the experimental analysis, the problem was
investigated theoretically through the flat cylinder theory, originally developed by
Vorus (1996), and extended to asymmetric configurations in Xu, Troesch & Vorus
(1998). Chekin (1989) presented the solution of asymmetric/oblique entry of a wedge
obtained through the construction of a function which conformally maps the upper
half-plane onto the flow domain using the Schwarz integral and the Sokhotsky–Plemelj
formula. The model assumes that flow separation always occurs in asymmetric water
entry, although this assumption seems not confirmed by the experiments (Judge
et al. 2004). The mapping method of complex analysis has been also applied by de
Divitiis & de Socio (2002) to the study of asymmetric wedge impact. They built
a physico-mathematical model in which the jet tips are represented by sinks and
proposed a theoretical expression for the flow potential including several unknown
parameters, which are found by using an optimization procedure to enforce mass,
momentum and energy conservation. Although they speculate about the dynamic and
kinematic boundary conditions, these conditions were not used in the derivation of the
results.

In this paper we present a nonlinear analytical self-similar solution of the
asymmetric/oblique water entry flow of a wedge which does not assume flow
separation from the wedge apex. The solution is given in terms of two governing
functions, which are the complex velocity and the derivative of the complex potential
defined in the parameter domain. The theoretical formulation of the problem is
discussed in § 2 where these governing functions are derived. The complex velocity is
written as a function of the variation of the velocity modulus along the free boundary
whereas the derivative of the complex potential contains a function representing the
angle that the velocity vector forms with the free surface. Both the variation of the
velocity modulus and the angle of the velocity vector are functions of a parameter
variable along the free surface. By exploiting the self-similarity of the problem and
the dynamic and kinematic boundary conditions, the solution is derived in the form
of a system of an integral and an integro-differential equation with respect to the
aforementioned functions. In § 3 the method of successive approximations adopted for
solving the system of integral equations is presented along with a careful validation
carried out in the case of the vertical water entry of symmetric wedges. In § 4 solutions
obtained for asymmetric wedge impact are presented in terms of free surface shape,
contact angle at the tips, pressure distributions and force and moment coefficients.
For a fixed wedge angle, results obtained for different heel angles are provided and the
role played by the asymmetry in the above quantities is discussed. Particular attention
is given to the limit conditions beyond which flow separation from the wedge apex
may take place and only one side of the wedge is completely wetted by the liquid.
Owing to the assumptions made, these also represent the limits for the applicability
of the present model.
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Figure 1. Sketches of (a) the physical plane and (b) the parameter domain with the
notations used.

2. Theoretical formulation
The fluid is assumed incompressible and its flow potential with gravity and surface

tension effects negligible. The flow about an asymmetric wedge entering a liquid
surface, originally at rest, is studied in a frame of reference attached to the impacting
body with its origin C located at the wedge apex. The bisector of the wedge is inclined
at an angle δ with respect to the velocity of the fluid far from the wedge, which forms
an angle γ∞ with the horizontal axis x and its modulus approaches the value V∞ (see
figure 1a). The heel angle δ is positive when the wedge is rotated counterclockwise
with respect to the velocity direction. Let 2α denote the wedge angle; it follows that
βL = π − γ∞ − α − δ and βR = γ∞ − α + δ are the deadrise angles with respect to the
incoming flow on the left- and right-hand sides, respectively.

For a constant entry velocity, the time-dependent problem in the physical plane
Z = X + iY can be written in terms of a self-similar solution in a stationary domain
z = x + iy, with x = X/(V0t), y = Y/(V0t) where V0 is the velocity modulus in the
physical plane of the contact point O at the right-hand side of the wedge. According
to the above definitions, V0 is used as a reference value and then the velocity modulus
of the point O in the stationary plane is unity (v0 = 1). The complex velocity potential
W (Z, t) = Φ(Z, t) + iΨ (Z, t) takes the form

W (Z, t) = V 2
0 tw(z) = V 2

0 t [φ(z) + iψ(z)], (2.1)

where φ and ψ are the velocity potential and the stream function in the stationary
plane z.

The problem is to determine the mapping function from the stationary plane z onto
the complex velocity potential domain w. Following Helmholtz (1868) and Kirchhoff
(1869), Zhukovskii (1890) proposed a useful method for solving problems of steady
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jet flows by introducing the function

ω = − ln
dw

dz
.

Instead of finding the conformal map w = w(z) directly, he mapped an upper half-
plane onto both the ω(ζ ) and w(ζ ) domains. If ω(ζ ) and w(ζ ) are known in terms
of the parameter variable ζ , the velocity field and the mapping function can be
determined as follows:

dw

dz
= exp (−ω(ζ )), z(ζ ) = z(0) +

∫ ζ

0

dw

dζ

/
dw

dz
dζ. (2.2)

Since for steady jet flows past polygonal bodies the map of the fluid domain
onto the w-plane and ω-plane has a polygonal shape, the mapping function can be
found through the Schwarz–Christoffel formula. Chaplygin, analysing different types
of singularities which may occur for various two-dimensional problems, proposed the
construction of dw/dz and dw/dζ without introducing the conformal mapping in
an explicit form. Instead, several auxiliary parameter regions are considered with the
only condition that the boundaries are composed of straight line segments and/or
arcs of circles which make the use of mirror images easy. Chaplygin’s method is
discussed in the book by Gurevich (1965). In contrast to steady flows, in the present
free surface flow the velocity modulus varies along the free boundary, thus requiring
a different procedure for the construction of the expressions for the complex velocity
dw/dz and for the derivative of the complex potential dw/dζ .

We choose the first quadrant of the ζ -plane as a parameter domain to obtain the
expressions for the derivative of the complex potential and the complex velocity in
terms of ζ = ξ + iη. Three arbitrary points are fixed in the parameter domain, which
are O , B , and D as shown in figure 1(b). In this plane the free surface is along the
positive imaginary axis (η > 0, ξ = 0) whereas the wetted part of the wedge is along
the positive real axis (ξ > 0, η = 0) and the points ζ = a and ζ = c correspond to the
stagnation point A and to the wedge apex C in the physical plane, respectively. The
parameters a and c are unknowns and have to be derived as a part of the solution.

2.1. Expression for the complex velocity

In order to derive the expression for the complex velocity, we note that it has two
singularities which correspond to the stagnation point A and to the wedge apex C

(figure 1) where the velocity field diverges. Furthermore, on the free surface, the
velocity modulus changes from v = 1 at the contact point O , up to v∞ at infinity D

and, similarly, it varies from v∞ to vB when moving from infinity D′ to the contact
point B lying on the left-hand side of the wedge. At this stage it is assumed that the
velocity modulus along the free surface, that is along the imaginary axis,

v(η) =

∣∣∣∣dw

dz

∣∣∣∣,
is known. This function is determined later on by using the dynamic boundary
condition. Due to the impermeability condition, on the real axis of the parameter
domain the argument of the complex conjugate velocity is fixed and is

arg

(
dw

dz

)
=




−βR, 0 < ξ < a

π − βR, a < ξ < c

−π + βL, c < ξ < ∞.

(2.3)
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The problem is to find the function dw/dz in the parameter domain which satisfies
the given boundary conditions. With the aim of applying the singular points method,
we decompose the free boundary into N intervals (Ej−1, Ej ), with j = 1–N , and
assume that the velocity modulus is piecewise constant, that is v(η) = vj for η ∈
(ηj−1, ηj ), so that the velocity modulus changes stepwise from vj−1 to vj at each
vertex Ej−1. Here η0 = 0 and ηN = ∞ are assumed.

On the basis of the above assumptions, we consider the properties of the function
(dw/dz)i, i being the imaginary unit, the argument of which is the logarithm of
the velocity modulus. Thus, moving along an infinitesimal semicircle in the ζ -plane
centred at ζ = iηj , the argument of (ζ − iηj ) changes by π, while the corresponding
change in the argument of (dw/dz)i is (ln vj − ln vj−1). Therefore, near ζ = iηj we
have that (

dw

dz

)i

∼ (ζ − iηj )
[ln(vj /(vj−1))]/π, j = 1−N.

Similarly, moving along infinitesimal semicircles in the ζ -plane centred at ζ = c

and at ζ = a, the arguments of (ζ − c) and (ζ − a) change by π. According to the
boundary conditions (2.3), the corresponding changes in the argument of dw/dz is
(−π + 2α) and π for points C and A, respectively. As a result, the local behaviour of
dw/dz in the ζ -plane is dw/dz ∼ (ζ − c)(2α−π)/π about C and dw/dz ∼ (ζ − a) about
A. There are no other points in the flow domain where the velocity might be zero or
infinity.

With the aim of satisfying the boundary conditions along the solid boundary, that
is along the real axis in the ζ -plane, and along the free surface, that is along the
imaginary axis, mirror images are considered. Singularities at the inverse order are
introduced at each symmetric point, thus giving

f (ζ ) = vN exp (−iπ + iβL)

(
ζ − a

ζ + a

)(
ζ + c

ζ − c

)1−2α/π N∏
j=1

(
ζ − iηj

ζ + iηj

)−(i/π) ln(vj /(vj−1))

.

The argument of (η − ηj ) is defined as

arg(η − ηj ) =

{
−π, η < ηj

0, η > ηj

because when moving in the counterclockwise direction along an infinitesimal
semicircle of radius ε in the ζ -plane centred at ζ = iηj , arg(ζ − iηj ) → (−π) as
ζ → i(ηj − ε) and arg(ζ − iηj ) → 0 as ζ → i(ηj + ε), as shown in figure 1(b).

From the definition of f (ζ ), the function F (ζ ) = (dw/dz)/f (ζ ) contains no
singularities in the whole ζ -plane, including the point at infinity, thus implying
that F (ζ ) is holomorphic and bounded. According to Liouville’s theorem F (ζ ) must
be constant. Then, the complex velocity can be written as

dw

dz
= vN exp (−iπ + iβL)

(
ζ − a

ζ + a

)(
ζ + c

ζ − c

)1−2α/π N∏
j=1

(
ζ − iηj

ζ + iηj

)−(i/π) ln(vj /(vj−1))

,

in which the stepwise variation assumed for the velocity modulus along the free
surface appears. By taking the limit as the step in the velocity modulus tends to zero
and, correspondingly, N → ∞, the last factor in the above equation can be recast in



Nonlinear water entry problem of asymmetric wedges 237

D′

DD′

B O

iψ

φ

w-plane(a)

(b) (c)

π + ∆θj

∆θj

θj –1

θj

Ej –1

Ej +1

Ej

O

B

D

A

C µL

µL

µR

µR

γ∞

γ∞ θ

vs/v

vn/v

Figure 2. Sketches of (a) the fluid domain in the w-plane, (b) the hodograph of the function
θ and (c) of the free surface discretization.

exponential form, and letting ln(vj/vj−1) = (d ln v/dη)�η we obtain

dw

dz
= vB

(
ζ − a

ζ + a

)(
ζ + c

ζ − c

)1−2α/π

exp

[
− i

π

∫ ∞

0

d ln v

dη′ ln

(
ζ − iη′

ζ + iη′

)
dη′ − i(π − iβL)

]
,

which, taking into account that arg(ζ − iη) = arg(iη − ζ ) − π, finally leads to the
continuous form:

dw

dz
=

(
ζ − a

ζ + a

) (
ζ + c

ζ − c

)1−2α/π

exp

[
− i

π

∫ ∞

0

d ln v

dη′ ln

(
iη′ − ζ

iη′ + ζ

)
dη′ − i(π − iβL)

]
.

(2.4)

It can be easily verified that for ζ = ξ the argument of equation (2.4) satisfies
conditions (2.3) while, for ζ = iη, its modulus is just the function v(η).

2.2. Expression for the derivative of the complex potential

The complex potential has singularities at the points O, A, B and D which correspond
to the corner points of the domain boundary in the w-plane, as shown in figure 2(a).
Let µR and µL denote the contact angles at the intersection points on the right-
and left-hand side, respectively. Since the velocity has no singularity there, the
domain boundary in the w-plane and z-plane has the same angle. Moving along
an infinitesimal semicircle with centre at O in the ζ -plane, arg(ζ ) changes by π/2,
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while the corresponding change in arg(w−w0) is µR . Hence, the local mapping should
behave like ζ 2µR/π, differentiation of which provides dw/dζ ∼ ζ 2µR/π−1.

Similarly, moving around a semicircle with centre at D, that is ζ= i, the argument
arg(ζ − i) changes by π and the corresponding change in arg(w − ∞) is −π. Therefore,
the complex potential has a simple pole, that is w ∼ (ζ − i)−1 and dw/dz ∼ (ζ − i)−2.
In the same way it is possible to show that near A we have w ∼ (ζ − a)2 and
dw/dz ∼ (ζ − a).

In order to analyse the behaviour of the velocity potential along the free surface, it
is useful to introduce the unit vectors n and τ denoting the normal and the tangent to
the free surface. The normal vector n is directed out from the fluid domain whereas
the spatial coordinate along the domain boundary s increases in the direction in
which the free surface has the fluid domain to the left (figure 1). With this notation,
dw = (vs +ivn)ds, where vs and vn are the tangential and normal velocity components,
respectively. Let θ(η) denote the angle between the velocity vector on the free surface
and the unit vector τ ; it follows that θ(η) = tan−1(vn/vs), the behaviour of which
along the free surface is shown in figure 2(b).

As already done for the velocity modulus, in a first step we assume that this function
is piecewise constant. Once the discrete form is obtained the continuous expression
is recovered by taking the limit as the step tends to zero and, correspondingly, the
number of elements tends to infinity. We assume that θ(η) = θj on each interval
(Ej−1, Ej ), which is η ∈ (ηj−1, ηj ), with a jump �θj−1 = θj − θj−1 at ζ = iηj−1

(see figure 2c). By taking into account the change in the arguments, it can be
shown that the mapping function must behave like (w − wj ) ∼ (ζ − iηj )

1+�θj /π,
from which dw/dζ ∼ (ζ − iηj )

�θj /π , j = 1−N . From the above considerations, we
need to construct the function dw/dζ , the argument of which is 0 where η = 0 and
0 < ξ < ∞ and is θj −π/2 where ξ = 0 and ηj−1 < η < ηj . Moreover, additional mirror
singularities at ζ = −a, ζ = −i and ζ = −iηj , j = 1−N must be considered, with
the same order of singularity as the corresponding ones in the symmetric positions.
By multiplying all the singularities and following the same procedure used before, we
finally obtain

dw

dζ
= Kζ 2µR/π−1 (ζ 2 − a2)

(ζ 2 + 1)2
exp

(
1

π

∫ π

0

dθ

dη′ ln(ζ 2 + η′2)dη′
)

. (2.5)

Integration of equation (2.5) in the parameter domain provides the function that
conformally maps the parameter domain onto the corresponding domain in the
complex potential plane:

w(ζ ) = w(0) +

∫ ζ

0

Kζ 2µR/π−1 (ζ 2 − a2)

(ζ 2 + 1)2
exp

(
1

π

∫ π

0

dθ

dη′ ln(ζ 2 + η′2)dη′
)

dζ, (2.6)

while from the ratio between equation (2.5) and (2.4) we obtain the expression

dz

dζ
= Kζ 2µR/π−1 (ζ + a)2

(1 + ζ 2)2

(
ζ − c

ζ + c

)(1−2α/π)

exp

[
1

π

∫ ∞

0

dθ

dη′ ln(η′2 + ζ 2) dη′

+
i

π

∫ ∞

0

d ln v

dη′ ln

(
ζ − iη′

ζ + iη′

)
dη′ + i(π − βL)

]
, (2.7)
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integration of which along the imaginary axis in the parameter domain gives the free
surface shape in the z-plane. The parameters a, c, K and the functions v(η) and θ(η)
are determined from the boundary conditions and from physical considerations.

At infinity, the inflow velocity approaches the value v∞ exp (−iγ∞). Hence, by taking
the argument of equation (2.4) when ζ =i we obtain the nonlinear condition

− 1

π

∫ ∞

0

d ln v

dη′ ln

∣∣∣∣η
′ − 1

η′ + 1

∣∣∣∣ dη′+

(
1 − 2α

π

)(
2 arctan

1

c
− π

)
+2 arctan

1

a
+π−δ−α = 0.

(2.8)

Furthermore, by definition, the wetted length on the right-hand side of the wedge
grows like V0t and then the length of the segment OC in the stationary plane is unity,
that is |zO | = 1, which implies

∫ c

0

∣∣∣∣ dz

dζ

∣∣∣∣
ζ=ξ

dξ = 1. (2.9)

Finally, an additional condition is obtained by enforcing that the y-coordinates of
the free surface at the infinity on the right- and left-hand sides have be to the same,
that is

Im

(∮
ζ=i

dz

dζ
dζ

)
= πi Res

ζ=i

dz

dζ
= lim

ζ=i

d

dζ

(
dz

dζ
(ζ − i)2

)
= 0.

By calculating the integral through the residue we get

1

π

∫ ∞

0

dθ

dη′
dη′

η′2 − 1
+

a2

a2 + 1
− µR

π − 1
= 0. (2.10)

Equations (2.8)–(2.10) provide the unknown parameters a, c, K once the functions
v(η) and θ(η) are specified.

2.3. Dynamic boundary condition

As the point O lies on the free surface along which the pressure is constant and equal
to the atmospheric value Pa , the Cauchy–Lagrange integral written in the physical
plane for the point O and for an arbitrary point in the flow field gives

∂Φ

∂t

∣∣∣∣
Z

+
V 2

2
+

P

�
=

∂Φ

∂t

∣∣∣∣
Z0

+
V 2

0

2
+

Pa

�
. (2.11)

We consider the fluid boundary as a function Z(S, t) where t denotes time and S

is the arc spatial coordinate which takes the value S =0 at the contact point O , is
positive moving along the wedge surface and negative moving along the free surface
toward the right. By using the self-similar variable s = S/(V0t), the fluid boundary in
the physical plane is given by

Z(S, t) = V0tz(s),

where z(s) is the equation of the fluid boundary in the stationary plane.
On the basis of the above definitions, we express the time derivative of the velocity

potential in terms of the derivatives with respect to S and t , that is

∂W

∂t

∣∣∣∣
Z

=
∂W

∂t

∣∣∣∣
S

− ∂W

∂Z

∣∣∣∣
t

∂Z

∂t

∣∣∣∣
S

=
∂W

∂t

∣∣∣∣
S

− V 2, (2.12)
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where V 2 = UU is the square of the velocity modulus in the physical plane which is
∂Z/∂t |S = U from the kinematic condition and ∂W/∂Z|t = U from the definition of
the complex velocity potential. Since

W (S, t) = V 2
0 tw

(
S

V0t

)
⇒ ∂W

∂t

∣∣∣∣
S

= V 2
0 w(s) − V 2

0

dw

ds
s

equation (2.12) leads to

∂W

∂t

∣∣∣∣
Z

= V 2
0 w(s) − V 2

0

dw

ds
s − V 2

0 v2. (2.13)

If the complex potential is set to zero at point O , that is W (Z0, t) =V 2
0 tw(0) = 0,

where Z0 = V0te
iβR , by applying equation (2.13) at s = 0 it follows that

∂W

∂t

∣∣∣∣
Z=V0t

= −v2V 2
0 = −V 2

0 ,

that is v2 = 1 at O . By using the above result along with the real part of equation
(2.12), we finally obtain

v2 = 1 + 2φ − 2
dφ

ds
s, (2.14)

which is valid at any point lying on the free surface.
By taking the derivative of equation (2.14) with respect to s and accounting for the

relations dφ/ds = vs and vs = v cos θ , the following differential equation is obtained:

d ln v

ds
=

s sin θ

v + s cos θ

dθ

ds
, (2.15)

which shows the relation between the derivative of the modulus and the derivative of
the angle of the velocity at the free surface. It is worth noting that the above equation
is derived using only the self-similarity and therefore it holds along the free boundary
of any two-dimensional self-similar problem.

By multiplying both sides of equation (2.15) by ds/dη, we obtain

d ln v

dη
=

s sin θ

v + s cos θ

dθ

dη
, (2.16)

where

s(η) = −
∫ η

0

∣∣∣∣ dz

dζ

∣∣∣∣
ζ = iη

dη = −K

∫ η

0

η2µR/π − 1

v(η)

η2 + a2

(1 − η2)2
exp

[
1

π

∫ ∞

0

dθ

dη′ ln
∣∣η′2 − η2

∣∣ dη′
]
dη.

(2.17)

The set of equations (2.14)–(2.17) is valid for the right-hand side only. A similar set
can be derived for the left-hand side by assuming W (ZB, t) = 0.

2.4. Kinematic boundary condition

Since the pressure is constant along the free surface the acceleration of the fluid
particles is orthogonal to the boundary

Re

(
∂U

∂t
dZ

)
= 0. (2.18)

Let γ denote the argument of the velocity vector U and χ the argument of a small
element dZ lying on the free surface. Thus, by using the similarity relations to pass
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from the variables in the physical plane to the corresponding ones in the stationary
plane, we obtain

∂U

∂t

∣∣∣∣
S

= V0

du

ds

(
− s

t

)
= V0

du

dη

dη

ds

(
− s

t

)
, dZ = V 2

0 t

(
dw

dζ

/
dw

dz

)
dζ = V 2

0 teiχds,

where u = veiγ . In the above equation the derivative of u with respect to η is

du

dη
= veiγ

(
d ln v

dη
+ i

dγ

dη

)
,

use of which in the condition (2.18) leads to

dγ

dη
= − 1

tan θ

d ln v

dη
, (2.19)

where, by definition, θ = χ − γ .
By writing equation (2.4) for ζ = iη, another equation for γ can be obtained as

γ = Im

(
ln

dw

dz

)

the derivative of which with respect to η provides

dγ

dη
=

2a

η2 + a2
+

(
2α

π
− 1

)
2c

η2 + c2
− 1

π

∫ ∞

0

d ln v

dη′
2η′

η′2 − η2
dη′. (2.20)

From equations (2.19) and (2.20), the following integral equation in terms of d ln v/dη

is obtained:

− 1

2 tan θ

d ln v

dη
+

1

π

∫ ∞

0

d ln v

dη′
η′

η′2 − η2
dη′ =

a

η2 + a2
+

(
2α

π
− 1

)
c

η2 + c2
. (2.21)

The system of equation (2.8)–(2.10), (2.16), (2.21) is closed and determines the
parameters a, c, K and the unknown functions v(η) and θ(η).

On the wedge sides, the normal velocity component is zero so that θR = π and
θL = 0, with θR and θL denoting the angle that the velocity forms with respect to the
tangent vector τ along the body (see figure 1a). Once the function θ(η) is evaluated,
the contact angles between the wedge sides and the free surface, µR and µL, can be
determined as follows (see figure 2b):

µR = θR −
[
π − lim

η → 0
θ(η)

]
= θ(0), µL =

[
π − lim

η → ∞
θ(η)

]
− θL = π − lim

η → ∞
θ(η).

(2.22)

2.5. Pressure distribution

In order to evaluate the pressure distribution on the solid surface, the term ∂Φ/∂t in
equation (2.11) has to be written in terms of the quantities in the stationary plane z.
In the physical plane the wedge surface is given by the following expressions:

Z(S, t) = V0t

(
1 − S

V0t

)
eiβR , 0 � S � V0t,

Z(S, t) = V0t

(
S

V0t
− 1

)
ei(π−βL), V0t � S � (V0 + VB)t,



242 Yu. A. Semenov and A. Iafrati

for the right- and left-hand sides, respectively, from which it follows that

∂Z

∂t

∣∣∣∣
S

= V0e
iβR , 0 � S � V0t,

∂Z

∂t

∣∣∣∣
S

= −V0e
i(π−βL), V0t � S � (V0 + VB)t.

By substituting the above expressions into equation (2.12) and taking into account
that the imaginary part of the complex potential equals zero on the solid surface, we
obtain

∂Φ

∂t

∣∣∣∣
Z

=
∂Φ

∂t

∣∣∣∣
S

− vV 2
0 = V 2

0 φ + V 2
0 v(s − 1), 0 � s � 1,

∂Φ

∂t

∣∣∣∣
Z

=
∂Φ

∂t

∣∣∣∣
S

+ vV 2
0 = V 2

0 φ + V 2
0 v(1 − s), 1 � s � 1 + vB.

By using the above results in equation (2.11) the following expressions for the pressure
coefficient p = 2P/(�V 2

∞) are finally recovered:

pR(ξ ) = −2(φ + sv) + (1 − v)2

v2
∞

, 0 � ξ � c, (2.23)

pL(ξ ) = −2(φ − sv) + (1 + v)2

v2
∞

, c � ξ � ∞, (2.24)

where φ, v, s are determined from equation (2.6), (2.4) and (2.7) as

φ = Re(w(ζ )|ζ=ξ ), v =

∣∣∣∣dw

dz

∣∣∣∣
ζ=ξ

, s(ξ ) =

∫ ξ

0

∣∣∣∣ dz

dζ

∣∣∣∣
ζ=ξ

dξ.

3. Numerical method and validation
3.1. Numerical approach

The boundary value problem under consideration is reduced to a system of nonlinear
equations including the integro-differential equation (2.16) and integral equation
(2.21). It is possible to eliminate the function d ln v/dη by using equation (2.16)
and reduce the problem to one singular integral equation similar to that obtained by
Dobrovol’skaya (1969). However, it is much easier to derive the solution of the system
through the method of successive approximations. The method consists of applying
the Hilbert transform to solve the equation (2.21) and determining the (k + 1)th
approximation as follows:(

d ln v

dη

)k +1

=
4

π

∫ ∞

0

{
1

2 tan θ

d ln v

dη′ +
a

a2 + η′2 +

(
2α

π
− 1

)
c

c2 + η′2

}k
η′

η′2 − η2
dη′.

(3.1)

From equation (2.21) we find the (k + 1)th approximation of the derivative dθ/dη(
dθ

dη

)k+1

=
vk+1 + sk cos θk

sk sin θk

(
d ln v

dη

)k+1

, (3.2)

integration of which along the imaginary axis of the parameter domain provides the
(k + 1)th approximation for the function θ(η). The system of nonlinear equations
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(2.8)–(2.10) is solved at each iteration. The functions d ln v/dη and dθ/dη are defined
for any 0<η < ∞ and, correspondingly, for any free surface point.

In discrete form the solution is enforced at a fixed set of points ηj , j = 1–N lying
on the imaginary axis of the parameter domain. The functions v(η) and θ(η) are
interpolated linearly on intervals (ηj−1, ηj ) to obtain analytical expressions for the
integrals in (2.4) and (2.5), thus allowing a reduction of the computational effort. The
first point η1 = ε and the last one ηN are chosen enough small and enough large,
respectively, to achieve good accuracy. The arclength s1 of the free surface point
nearest to O is analytically evaluated by taking into account the singularity in the
integrand of equation (2.17), thus obtaining

s1 = −Ka2 exp

(
2

π

∫ ∞

0

dθ

dη′ ln η′dη′
)

η
2µR/π
1

2µR/π
. (3.3)

In a similar way, to derive the arclength sN of the point nearest to B , the integral in
equation (2.17) for η 	 ηN is written as

1

π

∫ ∞

0

dθ

dη′ ln |η′2 − η2|dη′ =
2 ln η

π
(θ(∞) − θ(0)) =

2 ln η

π
(π − µR − µL)

which provides

sN =
K

vB

η
−2µL/π
N

2µL/π
. (3.4)

Equations (3.3) and (3.4) show that, if the contact angle µR → 0 (µL → 0), the
arclength s1 (sN ) of the free surface point nearest to O (B), which mean the jet length,
tends to infinity as 1/µR (1/µL).

3.2. Validation for the symmetric wedge impact

For validation purposes, the numerical approach is applied to derive the similarity
solution of the flow about symmetric wedges impacting the free surface. With the
aim of evaluating the accuracy and grid-independence of the results, two different
distributions of the nodes ηj have been generated and employed in deriving the
solution. A first set of points is chosen to be symmetric with respect to η = 1 and
distributed as a geometric series in the interval 0 < ηj < 1, for j = 1–N/2, with
η1 = 10−5, and ηj = 1/ηN−j , for j = N/2+1–N . This symmetric distribution of nodes
in the parameter domain corresponds to an almost symmetric distribution (within
3%) of the nodes along the free surface in the physical plane. The numerical results
approach the solution of the integral equation (2.21) as η1 → 0 and N → ∞. However,
too small values of the ratio η1/ηN (say η1/ηN < 10−10) make the achievement of
good results using only fifteen figures in the number representation difficult. In order
to improve the accuracy, at least on the right-hand side, an asymmetric distribution
is used instead. The integration domain is divided into six parts, and within each
part N/6 nodes are distributed as a geometric series. The first element has been set
to η1 = 5 × 10−7, while the last elements of each part are: ηN/6 = 0.002, ηN/3 = 0.1,
ηN/2 = 1, η2N/3 = 1/ηN/3, η5N/6 = 1/ηN/6 and ηN = 5 × 103. Calculations are usually
carried out using N = 420.

The derivation of the solution about the jet tips is usually very challenging. In
particular, as discussed by Dobrovol’skaya (1969), the contact angle at the intersection
is a basic parameter and a good estimate of it is essential to get good accuracy
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Zhao & Faltinsen
Symmetric distribution Asymmetric distribution

α
(deg.) µ/π µR/π µL/π µR/π µL/π

9 0.07153 0.07247 0.07217 0.07162 0.07785
20 0.04992 0.05028 0.05018 0.04996 0.05236
30 0.03591 0.03613 0.03606 0.03594 0.03728
40 0.02514 0.02529 0.02523 0.02515 0.02601
50 0.01663 0.01675 0.01670 0.01664 0.01722
60 0.009913 0.010000 0.009962 0.009916 0.010364
70 0.004783 0.004860 0.004829 0.004790 0.005168
80 0.001337 0.001388 0.001369 0.001345 0.001560

Table 1. Contact angles obtained for the impact of symmetric wedges having different angles
α. Results obtained on the left- and right-hand side by using the symmetric and asymmetric
distributions of the nodes are compared with those obtained by Zhao & Faltinsen (1993).

throughout the fluid domain. In table 1, the contact angles predicted by the present
method are compared with the corresponding ones obtained through Dobrovol’skaya’s
model by Zhao & Faltinsen (1993). Similar results in terms of contact angles have
been also obtained by Keady & Fowkes (1998). It is worth remarking that the results
by Zhao & Faltinsen (1993) were obtained using 10−25 as the smallest integration
step when solving Dobrovol’skaya’s integral equation.

In table 1, results obtained by the present approach are listed in terms of the left and
right contact angles in order to show the intrinsic asymmetry of the numerical method.
From the results it can be seen that the symmetric distributions with η1 = 10−5 provide
accuracy of calculations in the range (0.6−4)% for both left and right contact angles,
while, by using the asymmetric distribution with η1 = 5 × 10−7, we achieve a much
better accuracy for the right-hand side, (0.04 − 0.6)%, and a worse accuracy for the
left, (3–8) %.

The difference between the results corresponding to symmetric and asymmetric
distributions is caused by the location of the first (η1 = ε) and last (ηN ) points on
the imaginary axis. If η1 decreases, i.e. the corresponding arclength s1 decreases as
follows from equation (3.3), the contact angle at the right-hand side approaches the
Zhao & Faltinsen (1993) results. On the contrary, if ηN decreases, the corresponding
arclength sN increases as follows from equation (3.4) and the accuracy of the predicted
contact angle at the left-hand side decreases. However, the reduced accuracy of the
prediction of the flow at the jet tip on the left-hand side does not affect the accuracy
on the other side. This led us to exploit the mirror symmetry in the asymmetric
wedge computations: for each case the solutions for positive and negative heel angles
are calculated, thus achieving an accurate prediction of the flow parameters on both
wedge sides without the need of using more than fifteen figures in the number
representation.

With the aim of evaluating the effect of the number of nodes, in table 2 a comparison
is presented, in terms of the angle at the intersection and of the maximum pressure
coefficient pmax , among results obtained by using N = 420 and N = 840 and those
reported in Zhao & Faltinsen (1993). As the asymmetric distribution of nodes is used,
the data from the right-hand side are listed in the table, being the most accurate.
The comparison indicates that convergence is achieved as the number of nodes is
increased although the variation is less than 1%.
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α µ/π µR/π µR/π pmax pmax pmax

(deg.) (ZF) (N = 420) (N = 840) (ZF) (N = 420) (N = 840)

60 0.009913 0.009916 0.009902 6.927 6.888 6.894
70 0.004783 0.004796 0.004782 17.774 17.702 17.735
80 0.001337 0.001355 0.001345 77.847 77.112 77.544

Table 2. Effect of the number of nodes on the angle at the intersection and on the maximum
pressure coefficient for different wedge angles α. Results by the present method are shown in
terms of the right-hand-side quantities which are the most accurate when using the asymmetric
distribution of nodes. The corresponding quantities reported in Zhao & Faltinsen (1993) (ZF)
are also shown.
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Figure 3. Pressure coefficient versus the horizontal coordinate x for (a) α = 60◦ and (b)
α = 70◦. Results by the present model (solid) are compared with those obtained through the
self-similar model described in Battistin & Iafrati (2004) (dashed).

As a further validation of the model, in figure 3 a comparison is shown in terms
of the pressure coefficients obtained by the present approach and by the self-similar
model proposed in Battistin & Iafrati (2004). The comparison, established for two
different wedge angles, exhibits a good agreement throughout the wetted body contour.
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δ (deg.) µR/π µ′
L/π yO y ′

B pR max p′
L max

0 0.009916 0.009913∗ 1.834 1.836∗ 6.888 6.927∗

5 0.013851 0.006778 1.852 1.822 5.072 9.958
10 0.018778 0.004307 1.886 1.809 3.968 15.61
15 0.025035 0.002425 1.956 1.792 3.757 27.72
20 0.033197 0.001097 2.112 1.761 3.579 61.25

Table 3. Effect of the heel angle δ on the angle at the intersections and on the maximum
pressure coefficient for a wedge with α = 60◦. Quantities marked ∗ denotes data reported in
Zhao & Faltinsen (1993) for the corresponding symmetric wedge case.

4. Asymmetric wedge impact
4.1. Effect of the heel angle on the solution

The role played by the asymmetry is investigated by performing numerical calculations
for fixed wedge angles and different heel angles δ. Attention is focused on the vertical
water entry case, that is γ∞ = π/2, thus implying that there is no asymmetry due to the
horizontal velocity component. As a verification of the numerical approach, the flow
about asymmetric wedges has been computed by using the symmetric distribution of
the nodes for both a positive and negative heel angle. Differences among the most
relevant parameters of the flow have been found to be within 1.5%. With the aim of
achieving a higher accuracy, the asymmetric point distribution is employed instead.
As the right-hand side is the most accurate when using an asymmetric distribution of
nodes, in the following the solution on the left-hand side is taken as that obtained on
the right-hand side for negative heel angle, i.e. µ′

L(δ) = µR(−δ). On the basis of the
verification carried out for symmetric wedges, reported in tables 1 and 2, we expect
the same accuracy be achieved for the asymmetric wedge impact.

In table 3 the solutions obtained for a wedge with α = 60◦ and different heel
angles are reported in terms of the contact angles, the free boundary elevation at the
intersection points and the pressure peaks on the right- and left-hand sides of the
wedge. From the results listed in table 3 it can be seen that, as the wedge rotates in
the counterclockwise direction, the angle at the intersection and the maximum free
surface elevation on the left-hand side decrease while those on the right-hand side
grow. Correspondingly, the pressure peak exhibits a significant growth on the left
and a reduction on the right side of the wedge. This behaviour is consistent with the
increase of the deadrise angle on the right side, βR = π/2 − α + δ, and the reduction
of that on the left side, βL = π/2 − α − δ.

Graphically, the effect of the asymmetry on the contact angle at the intersection
points for wedges with α = 60◦ and 30◦, is shown in figure 4 where the contact angles
are plotted versus the deadrise angle and compared with the solution obtained for
the symmetric wedge impact. In both cases, as the wedge rotates, the contact angle
is larger on the side with the larger deadrise angle and smaller on the opposite side.
Furthermore, for a given δ, the difference with respect to the symmetric solution is
larger on the side with the larger deadrise angle. It is also worth noting that, by
extrapolating the curve µR = µR(βR) to βR/π = 0.472 (which is βR = 85◦), it can
be seen that the contact angle on the right-hand side grows beyond the limit value
µ/π = 0.1 found for the symmetric wedges (Fraenkel & Keady 2004).

The changes induced by the heel angle on the free surface shape are shown in
figure 5 where the solution for a wedge with α = 30◦ rotated by a heel angle δ = 15◦
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Figure 4. Contact angle µ as a function of the deadrise angle for asymmetric wedge impact.
Calculations are performed for wedges with α = 30◦ (dashed, �) and 60◦ (dotted, ◦) rotated
by a heel angle δ = 0, 5◦, 10◦, 15◦, 20◦. For each orientation of the wedge, the left and right
contact angles are reported corresponding to the deadrise angle on the left- and right-hand
side, respectively. The solid line represents the solution for the symmetric wedge case.
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Figure 5. Free surface profiles for a wedge with α = 30◦ impacting with a heel angle δ = 15◦.
The corresponding symmetric solutions obtained for β = 45◦ and β = 75◦ are shown with
dashed lines on the left- and right-hand sides, respectively. The symbols on the two sides
represent the contact points for the symmetric (◦) and asymmetric (�) cases.

is compared with the free surface shapes of the corresponding symmetric solutions.
From this figure, we can see how the higher pressure field on the side with the smaller
deadrise angle forces the fluid to move toward the other side. Hence, as discussed
above, the free surface elevation is reduced on the side with the smaller deadrise angle
and increased on the opposite side. Correspondingly, the jet root on the left is closer
to the wedge apex while that on the right-hand side moves away from it.

The asymmetry due to the heel angle is also responsible for a rather remarkable
change in the pressure distribution. This effect is shown in figure 6 where the pressure
distributions obtained for wedges with α = 30◦ and 60◦ and heel angles of δ = 10◦ and
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Figure 6. Effect of the heel angle on the pressure distributions for wedge angles (a) α = 30◦

and (b) α = 60◦. Results for δ = 10◦ and δ = 20◦ (solid) are compared with those for δ = 0
(dotted) and with the corresponding symmetric solutions (dashed).

20◦ are compared with the solution obtained for δ = 0 (at the same wedge angle) and
with the corresponding solutions for symmetric wedge impact. As a consequence of
the crossflow at the wedge apex, a flow singularity occurs leading to negative pressure
in a very small region about x = 0, which is not shown in the figures. Moreover,
owing to the rotation of the wedge, the pressure on the left-hand side grows and
eventually a pressure peak appears although, compared to the symmetric solution, it
is much weaker and closer to the wedge apex. On the contrary, on the right-hand
side, the pressure is higher and acts on a wider region compared to the corresponding
symmetric solutions.

A careful look at the pressure distributions shown in figure 6 for δ = 20◦ also
reveals a particular behaviour about x � −0.2 for α = 30◦ and x � −2.5 for α = 60◦.
In order to investigate this point further, an enlarged view of the distributions of
pressure and velocity potential is shown in figure 7(a) for the case α = 60◦ and
δ = 20◦. The figure indicates that a local minimum in the pressure field occurs at
the point where the tangential velocity component vs = dφ/ds vanishes, which is at
the stagnation point in the frame of reference attached to the body. Furthermore, the
pressure distribution is characterized by a jump in the tangential derivative which is
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Figure 7. Close-up views of the distributions of the pressure p, velocity potential φ and the
steady p̄ and unsteady p̃ pressure components about x = −2.5 for a wedge with α = 60◦

rotated by δ = 20◦. According to equations (2.23) and (2.24), in order to make the different
terms comparable, the velocity potential φ is multiplyed by 2/v2

∞. The graph in (a) indicates
that a local minimun of the pressure occurs at the stagnation point where a minimum of
the velocity potential occurs. The jump in the tangential derivative of the pressure is directly
related to the unsteady component.

related to the behaviour of the velocity modulus about the stagnation point. With the
aim of explaining the behaviour of the pressure, let us assume the stagnation point
to be located on the right-hand side of the wedge at s = s∗ with s∗ < 1. The pressure
pR can be split into the steady p̄R and unsteady components p̃R for which we have

p̄R =
(1 − v2)

v2
∞

, p̃R = −2 (φ + vs − v + 1)

v2
∞

,

differentiation of which with respect to the arclength s yields

dp̄R

ds
= − 2v

v2
∞

dv

ds
,

dp̃R

ds
= − 2

v2
∞

(
dφ

ds
+ (s − 1)

dv

ds
+ v

)
.

At the stagnation point both the velocity modulus and the tangential derivative of the
velocity potential vanishes, i.e. v = 0 and dφ/ds = 0. By analysing the behaviour of
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the derivatives dv/dξ , ds/dξ , it can be shown that about the stagnation point ξ = a

the quantity dv/ds = (dv/dξ )/(ds/dξ ) is finite and different from zero thus providing

dp̄R

ds
= 0,

dp̃R

ds
=

2(1 − s∗)

v2
∞

dv

ds
.

The above equations indicate that the unsteady component is responsible for the jump
in the tangential derivative of the pressure, and that the jump is induced by the change
in the sign of the derivative of the velocity modulus dv/ds about the stagnation point.
This is clearly displayed in figure 7(b) where the steady and unsteady components of
the pressure are plotted separately.

The occurrence of a stagnation point in the frame of reference attached to the
impacting wedge is also shown by the streamfunction behaviour. In figure 8, the
streamline pattern is shown for four asymmetric conditions. In addition to the
stagnation point on the side with the smaller deadrise angle, the figure clearly
highlights the crossflow taking place at the apex as a consequence of the flow
asymmetry. As stated above, this crossflow is responsible for the pressure and velocity
singularities occurring at that point.

In figure 9, results obtained by the present method are compared with those
provided by a fully nonlinear numerical approach (Iafrati 2000) for a wedge with
α = 65◦ rotated by a heel angle δ = 5◦. The comparison is quite good although small
differences occur about the jet regions, probably because in the numerical model the
thinnest part of the jet is cut off the computational domain and replaced by a suitable
boundary condition enforced at the jet truncation.

4.2. Force and moment coefficients

The non-dimensional coefficients of the normal force acting on the right and left
wedge sides, CnR and CnL, and the coefficients CD and Cm of the total vertical force
and moment about the wedge apex are evaluated by integrating the pressure along
the real axis of the parameter domain:

C{nR,nL} =
1

0.5�V 2
∞H

∫ V{O,B}t

0

P{R,L}(S) dS =
1

h

∫ c,∞

0,c

p{R,L}[s(ξ )]
ds

dξ
dξ,

CD = CnR sin(α − δ) + CnL sin(α + δ),

Cm =
1

h2

{
(1 − s(ξ ))

ds

dξ

} (∫ c

0

pR[s(ξ )]dξ +

∫ ∞

c

pL[s(ξ )]dξ

)
,

where

s(ξ ) =

∫ ξ

0

∣∣∣∣ dz

dζ

∣∣∣∣
ζ=ξ

dξ,

and H is the characteristic length in the physical plane which is given by

H = V∞th, h = v∞(tan(α − δ) + tan(α + δ)).

The integrals in the above expressions converge since the integrand at ξ = c,
corresponding to the wedge apex, has a singularity (ξ − c)−1+2α/π as follows from
equations (2.4), (2.7), (2.23) and (2.24).
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Figure 8. Streamline pattern for the asymmetric impact. The occurrence of a stagnation point
on the less inclined side of the wedge is clearly evident. (a) α = 30◦, δ = 10◦; (b) α = 30◦,
δ = 20◦; (c) α = 60◦, δ = 10◦; (d) α = 60◦, δ = 20◦.

In figure 10, the dependence of the force coefficients on δ are presented for α = 30◦

and 60◦. For small δ, the force coefficients vary about linearly with the heel angle,
decreasing on the right-hand side and increasing on the left, while the total force
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Figure 9. Comparison between the pressure distribution obtained by the present approach
(solid) and that provided by a fully nonlinear numerical solver (dashed), for a wedge with
α = 65◦ rotated by δ = 5◦.

coefficient CD remains nearly constant. As expected, the drag force takes its minimum
for δ = 0, that is for the symmetric wedge entry. The moment coefficient grows almost
linearly with δ, at least for small values, and the growth rate for α = 60◦ is larger
than that for α = 30◦. This is due to the strong nonlinear effects that occur at small
deadrise angles, which give rise to very large pressure peaks.

There are two different effects limiting the maximum heel angle. The first limitation
has a physical background, being related to the occurrence of flow separation from
the wedge apex, as experimentally observed (Judge et al. 2004). As βR → π/2, the
pressure on the left-hand side pushes the fluid toward the right and, for large βR ,
separation takes place at the wedge apex. Correspondingly, as the heel angle grows,
the total force on the right-hand side CnR progressively diminishes: we assume the
point of separation as that where the force CnR crosses the zero axis and becomes
negative. The second limitation comes from the geometrical constraint βL > 0 which
implies δ < π/2 − α. From figure 10(a) it can be seen that, for α = 30◦, the force
coefficient on the right-hand side becomes zero when δ∗/π ∼ 0.1, which corresponds
to β∗

R ∼ 0.43π. In the case of the blunt wedge, α = 60◦, we see from figure 10(b) that,
up to the geometrical limitation δ = π/6, the force on the right-hand side remains
positive, thus indicating that flow separation does not occur, at least for the vertical
water entry considered in the present calculations.

It is worth remarking that there is no experimental evidence which can confirm the
criterion we proposed to signify the occurrence of flow separation. To our knowledge,
the only experimental work aimed at evaluating limit conditions for flow separation
is by Judge et al. (2004). In their experiments they used a wedge with α = 53◦ and
heel angle ranging from 0 to 34◦. The role played by the horizontal component of
the entry velocity has been investigated as well. Experimental measurements show
that, for the vertical water entry, flow separation does not occur for such wedge, even
at the largest heel angle, δ = 34◦. In presence of the horizontal velocity component,
separation is found at some heel angle which depends on the horizontal velocity
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Figure 10. Effect of the heel angle on non-dimensional coefficients: normal force on the
right-hand side CnR (solid), normal force on the left-hand side CnL (dashed), total vertical
force CD (dash-dot) and moment coefficient Cm (dotted). Results are shown for wegdes with
(a) α = 30◦ and (b) α = 60◦.

component. At first separation occurs with the jet tip remaining attached to the
wedge surface. Starting from these conditions, a further increase of δ leads to the
complete separation of the flow from the wedge side.

With the aim of evaluating the separation-free limits for the vertical water entry
of asymmetric wedges, calculations are performed for several wedge angles α and
heel angles δ and the value δ∗ corresponding to zero force on the right-hand side
of the wedge is plotted versus α in figure 11. It is found that the relation δ∗(α) is
approximately linear with δ∗ � 0.62 α. For α > 55◦ (α/π > 0.30) the normal force
acting on both wedge sides is positive for any heel angle below the geometrical
constraint. This result agrees with that found in Judge et al. (2004), who did not find
flow separation for the vertical water entry of a wedge with α = 53◦. The maximum
heel angle before flow separation occurrence has also been evaluated by de Divitiis &
de Socio (2002). However, due to the assumptions made in their model, they predicted
a much smaller range for the separation-free region.
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Figure 11. The heel angle δ∗ corresponding to zero force on one wedge side versus the wedge
angle α. The separation-free region lies below the solid line. This line can be approximated
by δ∗ � 0.62α (dotted). The dashed line corresponds to the geometrical constraint βL = 0
while the diamond shows to the separation-free condition experimentally found in Judge et al.
(2004).

5. Conclusions
The self-similar flow generated by the vertical water impact of asymmetric wedges

has been analytically solved. The theoretical approach is based on the construction of
the complex velocity potential in the parameter plane including the modulus and the
angle of the velocity as functions of the arclength along the free surface. The problem
is reduced to a system of an integral and an integro-differential equation with respect
to these functions which is solved by applying the Hilbert transform.

It is shown that, during the vertical impact of an asymmetric wedge, one side
of the wedge pushes out the liquid toward to the other side. This affects the free
surface elevation, decreasing the level on the side with the lower deadrise angle and,
correspondingly, increasing the level on the other side. With respect to the symmetric
solution, asymmetry leads to a reduction of the pressure peak on the side with
the smaller deadrise angle and a growth of the pressure peak on the opposite side.
Furthermore, the occurrence of a stagnation point on the less inclined side of the
wedge has been highlighted and the pressure about it has been discussed.

Limit conditions beyond which flow separation from the wedge apex may occur
have been evaluated on the basis of the total normal force acting on the wedge sides.
Within the region of attached flow, parametric dependences of the contact angles at
the intersections of the free boundary and the wedge, the pressure distribution, and
the force and moment coefficients have been provided.

Yu.A.S. gratefully acknowledges the Consiglio Nazionale delle Ricerche of Italy
which partially supported the study under the NATO Grant Bando N. 217.35
S - 2004.
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